Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 623
Filtrar
1.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38558237

RESUMO

The p24 family of proteins have been regarded as cargo receptors for endoplasmic reticulum (ER) to Golgi transport; however, their precise functions have yet to be revealed. In this issue, Pastor-Pareja and colleagues (https://doi.org/10.1083/jcb.202309045) show that the interaction of these proteins with Tango1 is critical for their localization at the ER exit site (ERES) and efficient transport of secretory proteins in Drosophila.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Drosophila , Retículo Endoplasmático , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(1): e2310404120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147551

RESUMO

Newly synthesized secretory proteins are exported from the endoplasmic reticulum (ER) at specialized subcompartments called exit sites (ERES). Cargoes like procollagen are too large for export by the standard COPII-coated vesicle of 60 nm average diameter. We have previously suggested that procollagen is transported from the ER to the next secretory organelle, the ER-Golgi intermediate compartment (ERGIC), in TANGO1-dependent interorganelle tunnels. In the theoretical model presented here, we suggest that intrinsically disordered domains of TANGO1 in the ER lumen induce an entropic contraction, which exerts a force that draws procollagen toward the ERES. Within this framework, molecular gradients of pH and/or HSP47 between the ER and ERGIC create a force in the order of tens of femto-Newtons. This force is substantial enough to propel procollagen from the ER at a speed of approximately 1 nm · s-1. This calculated speed and the quantities of collagen secreted are similar to its observed physiological secretion rate in fibroblasts, consistent with the proposal that ER export is the rate-limiting step for procollagen secretion. Hence, the mechanism we propose is theoretically adequate to explain how cells can utilize molecular gradients and export procollagens at a rate commensurate with physiological needs.


Assuntos
Colágeno , Pró-Colágeno , Pró-Colágeno/metabolismo , Transporte Proteico/fisiologia , Colágeno/metabolismo , Transporte Biológico , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo
3.
J Biol Chem ; 299(12): 105471, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979918

RESUMO

Recently, we demonstrated that agonist-stimulated Ca2+ signaling involving IP3 receptors modulates ER export rates through activation of the penta-EF Hand proteins apoptosis-linked gene-2 (ALG-2) and peflin. It is unknown, however, whether IP3Rs and penta-EF proteins regulate ER export rates at steady state. Here we tested this idea in normal rat kidney epithelial cells by manipulation of IP3R isoform expression. Under standard growth conditions, spontaneous cytosolic Ca2+ oscillations occurred simultaneously in successive groups of contiguous cells, generating intercellular Ca2+ waves that moved across the monolayer periodically. Depletion of IP3R-3, typically the least promiscuous IP3R isoform, caused increased cell participation in intercellular Ca2+ waves in unstimulated cells. The increased spontaneous signaling was sufficient to cause increased ALG-2 and COPII coat subunit Sec31A and decreased peflin localization at ER exit sites, resulting in increased ER-to-Golgi transport of the COPII client cargo VSV-G. The elevated ER-to-Golgi transport caused greater concentration of VSV-G at ER exit sites and had reciprocal effects on transport of VSV-G and a bulk-flow cargo, though both cargos equally required Sec31A. Inactivation of client cargo sorting using 4-phenylbutyrate had opposing reciprocal effects on client and bulk-flow cargo and neutralized any effect of ALG-2 activation on transport. This work extends our knowledge of ALG-2 mechanisms and indicates that in normal rat kidney cells, IP3R isoforms regulate homeostatic Ca2+ signaling that helps determine the basal secretion rate and stringency of COPII-dependent cargo sorting.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Cálcio , Motivos EF Hand , Receptores de Inositol 1,4,5-Trifosfato , Animais , Ratos , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Complexo de Golgi/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Rim/citologia , Isoformas de Proteínas/metabolismo , Transporte Proteico
4.
Proc Natl Acad Sci U S A ; 120(46): e2215285120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931110

RESUMO

The insulin-like growth factor 2 (IGF2) plays critical roles in cell proliferation, migration, differentiation, and survival. Despite its importance, the molecular mechanisms mediating the trafficking of IGF2 along the secretory pathway remain unclear. Here, we utilized a Retention Using Selective Hook system to analyze molecular mechanisms that regulate the secretion of IGF2. We found that a type I transmembrane protein, TMED10, is essential for the secretion of IGF2 and for differentiation of mouse myoblast C2C12 cells. Further analyses indicate that the residues 112-140 in IGF2 are important for the secretion of IGF2 and these residues directly interact with the GOLD domain of TMED10. We then reconstituted the release of IGF2 into COPII vesicles. This assay suggests that TMED10 mediates the packaging of IGF2 into COPII vesicles to be efficiently delivered to the Golgi. Moreover, TMED10 also mediates ER export of TGN-localized cargo receptor, sortilin, which subsequently mediates TGN export of IGF2. These analyses indicate that TMED10 is critical for IGF2 secretion by directly regulating ER export and indirectly regulating TGN export of IGF2, providing insights into trafficking of IGF2 for myoblast differentiation.


Assuntos
Fator de Crescimento Insulin-Like II , Mioblastos , Via Secretória , Proteínas de Transporte Vesicular , Animais , Camundongos , Diferenciação Celular , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo
5.
Cell Rep ; 42(6): 112635, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37300835

RESUMO

Coat protein complex II (COPII) plays an integral role in the packaging of secretory cargoes within membrane-enclosed transport carriers that leave the endoplasmic reticulum (ER) from discrete subdomains. Lipid bilayer remodeling necessary for this process is driven initially by membrane penetration mediated by the Sar1 GTPase and further stabilized by assembly of a multilayered complex of several COPII proteins. However, the relative contributions of these distinct factors to transport carrier formation and protein trafficking remain unclear. Here, we demonstrate that anterograde cargo transport from the ER continues in the absence of Sar1, although the efficiency of this process is dramatically reduced. Specifically, secretory cargoes are retained nearly five times longer at ER subdomains when Sar1 is depleted, but they ultimately remain capable of being translocated to the perinuclear region of cells. Taken together, our findings highlight alternative mechanisms by which COPII promotes transport carrier biogenesis.


Assuntos
GTP Fosfo-Hidrolases , Proteínas de Transporte Vesicular , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Retículo Endoplasmático/metabolismo , Transporte Proteico , Transporte Biológico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo
6.
Biochem Soc Trans ; 51(3): 971-981, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37334845

RESUMO

Proteins that are destined to enter the secretory pathway are synthesized on the rough endoplasmic reticulum (ER) and then translocated into the ER lumen, where they undergo posttranslational modifications, folding, and assembly. After passing a quality control system, the cargo proteins are packaged into coat protein complex II (COPII) vesicles to exit the ER. In metazoans, most COPII subunits have multiple paralogs, enabling COPII vesicles the flexibility to transport a diverse range of cargo. The cytoplasmic domains of transmembrane proteins can interact with SEC24 subunits of COPII to enter the ER exit sites. Some transmembrane proteins may also act as cargo receptors that bind soluble secretory proteins within the ER lumen, enabling them to enter COPII vesicles. The cytoplasmic domains of cargo receptors also contain coat protein complex I binding motifs that allow for their cycling back to the ER after unloading their cargo in the ER-Golgi intermediate compartment and cis-Golgi. Once unloaded, the soluble cargo proteins continue maturation through the Golgi before reaching their final destinations. This review provides an overview of receptor-mediated transport of secretory proteins from the ER to the Golgi, with a focus on the current understanding of two mammalian cargo receptors: the LMAN1-MCFD2 complex and SURF4, and their roles in human health and disease.


Assuntos
Retículo Endoplasmático , Complexo de Golgi , Animais , Humanos , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Mamíferos/metabolismo
7.
J Virol ; 97(7): e0018023, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37338368

RESUMO

Although most of the early events of the hepatitis C virus (HCV) life cycle are well characterized, our understanding of HCV egress is still unclear. Some reports implicate the conventional endoplasmic reticulum (ER)-Golgi route, while some propose noncanonical secretory routes. Initially, the envelopment of HCV nucleocapsid occurs by budding into the ER lumen. Subsequently, the HCV particle exit from the ER is assumed to be mediated by coat protein complex II (COPII) vesicles. COPII vesicle biogenesis also involves the recruitment of cargo to the site of vesicle biogenesis via interaction with COPII inner coat proteins. We investigated the modulation and the specific role of the individual components of the early secretory pathway in HCV egress. We observed that HCV inhibits cellular protein secretion and triggers the reorganization of the ER exit sites and ER-Golgi intermediate compartments (ERGIC). Gene-specific knockdown of the components of this pathway such as SEC16A, TFG, ERGIC-53, and COPII coat proteins demonstrated the functional significance of these components and the distinct role played by these proteins in various aspects of the HCV life cycle. SEC16A is essential for multiple steps in the HCV life cycle, whereas TFG is specifically involved in HCV egress and ERGIC-53 is crucial for HCV entry. Overall, our study establishes that the components of the early secretory pathway are essential for HCV propagation and emphasize the importance of the ER-Golgi secretory route in this process. Surprisingly, these components are also required for the early stages of the HCV life cycle due to their role in overall intracellular trafficking and homeostasis of the cellular endomembrane system. IMPORTANCE The virus life cycle involves entry into the host, replication of the genome, assembly of infectious progeny, and their subsequent release. Different aspects of the HCV life cycle, including entry, genome replication, and assembly, are well characterized; however, our understanding of the HCV release is still not clear and subject to debate due to varied findings. Here, we attempted to address this controversy and enhance our understanding of HCV egress by evaluating the role of the different components of the early secretory pathway in the HCV life cycle. To our surprise, we found that the components of the early secretory pathway are not only essential for HCV release but also contribute to many other earlier events of the HCV life cycle. This study emphasizes the importance of the early secretory pathway for the establishment of productive HCV infection in hepatocytes.


Assuntos
Retículo Endoplasmático , Hepatite C , Humanos , Animais , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Via Secretória , Hepacivirus/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Transporte Proteico , Hepatite C/metabolismo , Estágios do Ciclo de Vida , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo
8.
Development ; 150(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37052186

RESUMO

Newly synthesized membrane proteins pass through the secretory pathway, starting at the endoplasmic reticulum and packaged into COPII vesicles, to continue to the Golgi apparatus before reaching their membrane of residence. It is known that cargo receptor proteins form part of the COPII complex and play a role in the recruitment of cargo proteins for their subsequent transport through the secretory pathway. The role of cornichon proteins is conserved from yeast to vertebrates, but it is poorly characterized in plants. Here, we studied the role of the two cornichon homologs in the secretory pathway of the moss Physcomitrium patens. Mutant analyses revealed that cornichon genes regulate different growth processes during the moss life cycle by controlling auxin transport, with CNIH2 functioning as a specific cargo receptor for the auxin efflux carrier PINA, with the C terminus of the receptor regulating the interaction, trafficking and membrane localization of PINA.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Proteínas de Membrana Transportadoras , Animais , Transporte Proteico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Saccharomyces cerevisiae/metabolismo
9.
FEBS Lett ; 597(6): 865-882, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737236

RESUMO

Sar1 is a small GTPase of the ARF family. Upon exchange of GDP for GTP, Sar1 associates with the endoplasmic reticulum (ER) membrane and recruits COPII components, orchestrating cargo concentration and membrane deformation. Many aspects of the role of Sar1 and regulation of its GTP cycle remain unclear, especially as complexity increases in higher organisms that secrete a wider range of cargoes. This review focusses on the regulation of GTP hydrolysis and its role in coat assembly, as well as the mechanism of Sar1-induced membrane deformation and scission. Finally, we highlight the additional specialisation in higher eukaryotes and the outstanding questions on how Sar1 functions are orchestrated.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas de Saccharomyces cerevisiae , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Retículo Endoplasmático/metabolismo , Hidrólise , Guanosina Trifosfato , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
J Clin Invest ; 133(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36594468

RESUMO

Most proteins destined for the extracellular space or various intracellular compartments must traverse the intracellular secretory pathway. The first step is the recruitment and transport of cargoes from the endoplasmic reticulum (ER) lumen to the Golgi apparatus by coat protein complex II (COPII), consisting of five core proteins. Additional ER transmembrane proteins that aid cargo recruitment are referred to as cargo receptors. Gene duplication events have resulted in multiple COPII paralogs present in the mammalian genome. Here, we review the functions of each COPII protein, human disorders associated with each paralog, and evidence for functional conservation between paralogs. We also provide a summary of current knowledge regarding two prototypical cargo receptors in mammals, LMAN1 and SURF4, and their roles in human health and disease.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Proteínas de Membrana , Animais , Humanos , Transporte Proteico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Transporte Biológico/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Mamíferos/metabolismo
11.
J Cell Sci ; 136(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651113

RESUMO

The endoplasmic reticulum (ER) is the start site of the secretory pathway, where newly synthesized secreted and membrane proteins are packaged into COPII vesicles through direct interaction with the COPII coat or aided by specific cargo receptors. Little is known about how post-translational modification events regulate packaging of cargo into COPII vesicles. The Saccharomyces cerevisiae protein Erv14, also known as cornichon, belongs to a conserved family of cargo receptors required for the selection and ER export of transmembrane proteins. In this work, we show the importance of a phosphorylation consensus site (S134) at the C-terminus of Erv14. Mimicking phosphorylation of S134 (S134D) prevents the incorporation of Erv14 into COPII vesicles, delays cell growth, exacerbates growth of sec mutants, modifies ER structure and affects localization of several plasma membrane transporters. In contrast, the dephosphorylated mimic (S134A) had less deleterious effects, but still modifies ER structure and slows cell growth. Our results suggest that a possible cycle of phosphorylation and dephosphorylation is important for the correct functioning of Erv14.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Transporte Proteico
12.
Mol Biol Cell ; 34(3): br4, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652337

RESUMO

CUL3-RING ubiquitin ligases (CRL3s) are involved in various cellular processes through different Bric-a-brac, Tramtrack, and Broad-complex (BTB)-domain proteins. KLHL12, a BTB-domain protein, is suggested to play an essential role in the export of large cargo molecules such as procollagen from the endoplasmic reticulum (ER). CRL3KLHL12 monoubiquitylates SEC31, leading to an increase in COPII vesicle dimension. Enlarged COPII vesicles can accommodate procollagen molecules. Thus, CRL3KLHL12 is essential for the assembly of large COPII structures and collagen secretion. CRL3s are activated by CUL3 neddylation. Here, we evaluated the importance of CUL3 neddylation in COPII assembly and collagen secretion. Unexpectedly, the assembly of large COPII-KLHL12 structures persisted and cellular collagen levels decreased on treatment with MLN4924, a potent inhibitor of NEDD8-activating enzyme. When we introduced mutations into KLHL12 at the CUL3 interface, these KLHL12 variants did not interact with neddylated CUL3, but one of them (Mut A) still supported large COPII-KLHL12 structures. Overexpression of wild-type KLHL12, but not Mut A, lowered cellular collagen levels most likely via lysosomal degradation. Our results suggest that CUL3 neddylation is not necessary for the formation of large COPII-KLHL12 structures, but active CRL3KLHL12 contributes to the maintenance of collagen levels in the cell.


Assuntos
Colágeno , Pró-Colágeno , Colágeno/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Pró-Colágeno/metabolismo , Ligação Proteica , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Culina
13.
Artigo em Inglês | MEDLINE | ID: mdl-36096639

RESUMO

APOB-containing lipoproteins are large, complex lipid carriers that ferry bulk lipids into the circulation via the secretory pathway, originating from the endoplasmic reticulum of specialized cells in the liver or the gut. Elevation of APOB-containing lipoproteins in the plasma represents a major risk factor for cardiovascular diseases. The production of these lipoproteins requires enzyme-catalyzed, cross-membrane transfer of neutral lipids and phospholipids to lipoproteins, in particular onto the structural component APOB. Transport of these lipid-bearing cargos relies on the COPII machinery and employs the transmembrane cargo receptor SURF4 and the small GTPase SAR1B, together constituting a selective transport program. Intriguingly, a number of factors implicated in lipoprotein production are also packaged into COPII vesicles and may be cotransported with APOB. These observations therefore point to a specialized produce-and-export itinerary during the secretion of these lipid-bearing cargos, warranting future investigations into this unique yet pivotal process at the crossroad of cell biology and physiology.


Assuntos
Proteínas de Transporte , Lipoproteínas , Proteínas de Transporte/metabolismo , Lipoproteínas/análise , Lipoproteínas/metabolismo , Retículo Endoplasmático/metabolismo , Apolipoproteínas B/análise , Apolipoproteínas B/metabolismo , Homeostase , Transporte Proteico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-35940902

RESUMO

Secretory proteins are transported from the endoplasmic reticulum (ER) to the Golgi complex in carriers that are formed by the concerted activities of cytoplasmic proteins in the coat protein complex II (COPII). COPII was first described in Saccharomyces cerevisiae and its basic functions are largely conserved throughout eukaryotes. The discovery of the TANGO1 (transport and Golgi organization 1) family of proteins is revealing insights into how cells can adapt COPII proteins to reorganize the ER exit site for the export of the most abundant and bulky molecules, collagens.


Assuntos
Colágeno , Saccharomyces cerevisiae , Transporte Proteico , Colágeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo
15.
Methods Mol Biol ; 2557: 519-528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36512234

RESUMO

The Coat Protein I (COPI) complex forms vesicles from Golgi membrane for retrograde transport among the Golgi stacks, and also from the Golgi to the endoplasmic reticulum (ER). We have been elucidating the mechanistic details of COPI vesicle formation through a reconstitution system that involves the incubation of Golgi membrane with purified components. This approach has enabled us recently to gain new insight into how certain lipids are critical for the fission stage of COPI vesicle formation. Lipid geometry has been proposed to act in the formation of transport carriers by promoting membrane curvature. However, evidence for this role has come from studies using simplified membranes, while confirmation in the more physiologic setting of native membranes has been challenging, as such membranes contain a complex composition of lipids and proteins. We have recently refined the COPI reconstitution system to overcome this experimental obstacle. This has led us to identify an unanticipated type of lipid geometry needed for COPI vesicle fission. This chapter describes the approach that we have developed to enable this discovery. The methodologies include: (i) preparation Golgi membrane from cells that are deficient in a particular lipid enzyme activity and (ii) functional rescue of this deficiency by introducing the product of the lipid enzyme, with experiments being performed at the in vitro level to gain mechanistic clarity and at the in vivo level to confirm physiologic relevance.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Complexo de Golgi , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Lipídeos
16.
FEBS Lett ; 597(6): 819-835, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36513395

RESUMO

COPI-coated vesicles mediate transport between Golgi stacks and retrograde transport from the Golgi to the endoplasmic reticulum. The COPI coat exists as a stable heptameric complex in the cytosol termed coatomer and is recruited en bloc to the membrane for vesicle formation. Recruitment of COPI onto membranes is mediated by the Arf family of small GTPases, which, in their GTP-bound state, bind both membrane and coatomer. Arf GTPases also influence cargo selection, vesicle scission and vesicle uncoating. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) regulate nucleotide binding by Arf GTPases. To understand the mechanism of COPI-coated vesicle trafficking, it is necessary to characterize the interplay between coatomer and Arf GTPases and their effectors. It is also necessary to understand interactions between coatomer and cargo, cargo adaptors/receptors and tethers facilitating binding to the target membrane. Here, we summarize current knowledge of COPI coat protein structure; we describe how structural and biochemical studies contributed to this knowledge; we review mechanistic insights into COPI vesicle biogenesis and disassembly; and we discuss the potential to answer open questions in the field.


Assuntos
Fatores de Ribosilação do ADP , Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Humanos , Fatores de Ribosilação do ADP/metabolismo , Proteínas de Transporte/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Ativação Enzimática , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Especificidade por Substrato
17.
J Cell Sci ; 135(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36325988

RESUMO

Phase separation of components of ER exit sites (ERES) into membraneless compartments, the Sec bodies, occurs in Drosophila cells upon exposure to specific cellular stressors, namely, salt stress and amino acid starvation, and their formation is linked to the early secretory pathway inhibition. Here, we show Sec bodies also form in secretory mammalian cells upon the same stress. These reversible and membraneless structures are positive for ERES components, including both Sec16A and Sec16B isoforms and COPII subunits. We find that Sec16A, but not Sec16B, is a driver for Sec body formation, and that the coalescence of ERES components into Sec bodies occurs by fusion. Finally, we show that the stress-induced coalescence of ERES components into Sec bodies precedes ER exit inhibition, leading to their progressive depletion from ERES that become non-functional. Stress relief causes an immediate dissolution of Sec bodies and the concomitant restoration of ER exit. We propose that the dynamic conversion between ERES and Sec body assembly, driven by Sec16A, regulates protein exit from the ER during stress and upon stress relief in mammalian cells, thus providing a conserved pro-survival mechanism in response to stress.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Retículo Endoplasmático , Animais , Retículo Endoplasmático/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Via Secretória , Transporte Proteico , Mamíferos/metabolismo
18.
Nature ; 611(7935): 399-404, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36289347

RESUMO

The SEA complex (SEAC) is a growth regulator that acts as a GTPase-activating protein (GAP) towards Gtr1, a Rag GTPase that relays nutrient status to the Target of Rapamycin Complex 1 (TORC1) in yeast1. Functionally, the SEAC has been divided into two subcomplexes: SEACIT, which has GAP activity and inhibits TORC1, and SEACAT, which regulates SEACIT2. This system is conserved in mammals: the GATOR complex, consisting of GATOR1 (SEACIT) and GATOR2 (SEACAT), transmits amino acid3 and glucose4 signals to mTORC1. Despite its importance, the structure of SEAC/GATOR, and thus molecular understanding of its function, is lacking. Here, we solve the cryo-EM structure of the native eight-subunit SEAC. The SEAC has a modular structure in which a COPII-like cage corresponding to SEACAT binds two flexible wings, which correspond to SEACIT. The wings are tethered to the core via Sea3, which forms part of both modules. The GAP mechanism of GATOR1 is conserved in SEACIT, and GAP activity is unaffected by SEACAT in vitro. In vivo, the wings are essential for recruitment of the SEAC to the vacuole, primarily via the EGO complex. Our results indicate that rather than being a direct inhibitor of SEACIT, SEACAT acts as a scaffold for the binding of TORC1 regulators.


Assuntos
Microscopia Crioeletrônica , Proteínas Ativadoras de GTPase , Complexos Multienzimáticos , Animais , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/ultraestrutura , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/ultraestrutura , Mamíferos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Aminoácidos , Glucose , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo
19.
Bioessays ; 44(10): e2200064, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35986435

RESUMO

An entirely different mechanism and localization were recently proposed for the COPII coat complex, challenging its well-accepted function to select and concentrate cargo into small COPII-coated spherical transport vesicles. Instead, the COPII complex is suggested to form a dynamic yet stationary collar that forms a boundary between the ER and the ER export membrane domain. This membrane domain, the ER exit site (ERES), is the site of COPII-mediated sorting and concentration of transport competent proteins. Subsequently, the ERES is implicated to mature and bud to form a sizeable pleiomorphic transport carrier that translocate on microtubules to fuse with the Golgi apparatus. Despite this drastic mechanistic dogma shift, most of the underlying protein-protein and protein-membrane interactions remain unchanged. Here, we attempt to provide a detailed description of the newly proposed model of how ER to Golgi transport works by describing the role of several essential proteins of the transport machinery.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Complexo de Golgi , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico
20.
EMBO J ; 41(18): e110596, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35938214

RESUMO

Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER-to-Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER-to-Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER.


Assuntos
Mecanotransdução Celular , Proteínas Monoméricas de Ligação ao GTP , Transporte Biológico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...